Exam Seat No: \qquad

C.U.SHAH UNIVERSITY

Wadhwan City
Subject Code : 5SC02MTC5
Summer Examination-2014
Date: 18 /06/2014
Subject Name:- Algebra-I
Branch/Semester:- M.Sc(Maths)/II
Time:02:00 To 5:00
Examination: Regular
Instructions:-
(1) Attempt all Questions of both sections in same answer book / Supplementary
(2) Use of Programmable calculator \& any other electronic instrument is prohibited.
(3) Instructions written on main answer Book are strictly to be obeyed.
(4)Draw neat diagrams \& figures (If necessary) at right places
(5) Assume suitable \& Perfect data if needed

SECTION-I

Q-1 a) If U is an ideal of a ring with unity and $1 \in U$ prove that $U=R$.
b) Define principle ideal ring and give an example with illustration.
c) Define integral domain.

H UNIVE
d) What are characteristics of the following rings?
(i) $\left(\mathbb{Z}_{6},+_{6}, \cdot{ }_{6}\right)$
(ii) $(\mathbb{Z},+, \cdot)$
e) Define polynomial in an integral domain.

Q-2 a) Let $R=\left\{\left(\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right): a, b \in \mathbb{C}\right\}$, where \bar{a} is the conjugate of the complex number a. show that R is a non-commutative ring with unity.
b) For nonzero polynomials $f, g \in D[x]$, prove that $[f g]=[f]+[g]$.
c) For ideals I_{1} an I_{2} of a ring R, prove that $I_{1} \cup I_{2}$ is also an ideal of R if and only if $I_{1} \subset I_{2}$ or $I_{2} \subset I_{1}$.

OR

Q-2
a) Consider the subset, $I=\left\{\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right): a, b \in \mathbb{Z}\right\}$ of the ring
$R=\left(M_{2}(\mathbb{Z}),+, \cdot\right)$. Is I right ideal of ? Is I left ideal of ?
b) Prove that, the characteristic of a ring R with unity is n iff n is the smallest positive integer with $n 1=0$.
c) Let $(R,+, \cdot)$ and $\left(R^{\prime}, \oplus, \Theta\right)$ be rings. If homomorphism $\phi:(R,+$,
$\cdot) \rightarrow\left(R^{\prime}, \oplus, \Theta\right)$ is onto with its kernel K , prove that $R / K \cong R^{\prime}$.

Q-3 a) Prove that a finite integral domain is a field.
b) Let D^{\prime} be the set of all constant polynomials in $D[x]$, that is
$D^{\prime}=\{(a, 0,0, \ldots): a \in D\}$, prove that
(i) D^{\prime} is an integral domain.
(ii) $D \cong D^{\prime}$.

OR

Q-3 a) For an integral domain D, show that the set $D[x]$ of all polynomials on D is also an integral domain under the binary operations addition and multiplication.
b) Prove that every Euclidean ring is a principle ideal ring.

SECTION-II

Q-4 a) If $f=(0,1,2,0,0,0, \ldots), g=(1,0,-3,1,0,0, \ldots)$ for $f, g \in \mathbb{Z}[x]$ find $f+g$ and $f-g$.
b) If $f=([3],[0],[1],[0],[0],[0] \ldots)$ and $g=([2],[3],[4],[2],[0],[0])$, for $f, g \in \mathbb{Z}_{5}[x]$, find $f . g$.
c) Define irreducible polynomial in $F[x]$.
d) Define algebraic element.
e) Define normal extension of a field.

Q-5 a) If $x=(0,1,0,0, \ldots) \in D[x]$, show that $\left.x^{n}\right)=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ for each positive integer n with $a_{n}=1$ and $a_{i} \leqslant 0$ for each non-negative integer $i \neq n$.
b) Obtain the quotient $q(x)$ and remainder $r(x)$ on dividing
$f(x)=4 x^{4}-3 x^{2}+2$ by $g(x)=x^{3}-2 x+1$ in $\mathbb{R}[x]$ and express it in the form of division algorithm.
c) Find all zeros of $f(x)=30 x^{3}+89 x^{2}+82 x+24$ in $\mathbb{Z}_{7}[x]$.

OR

Q-5 a) For polynomials $f(x), g(x) \neq 0$ in $F[x]$, prove that there exist unique
polynomials $q(x)$ and $r(x)$ such that $f(x)=q(x) g(x)+r(x)$ where either $r(x)=0$ or $[r(x)] \leq[g(x)]$.
b) State and prove unique factorization theorem for polynomials.

Q-6 a) State and prove Eisenstein's criterion.
b) Suppose K is a finite extension of a field F. show that $G(K, F)$ is a finite
group and its order, $o(G(K, F))$ satisfies the relation $o(G(K, F)) \leq$ $[K: F]$.

OR

Q-6 a) Let K be an extension of a field F. prove that the element $a \in K$ is algebraic over F if and only if $F(a)$ is a finite extension of F.
b) Let K be a normal extension of a field F, of characteristic 0 . Show that there is a one to one correspondence between the set of subfiels of K which contains F and the set of subgroups of $G(K, F)$.

