Exam	Seat	No: Enrollment No:	Enrollment No:		
		C.U.SHAH UNIVERSITY			
		Wadhwan City			
		e : 5SC02MTC5 Summer Examination-2014 Date: 18/0	6/2014		
Branch	ı/Sem	ne:- Algebra-I nester:- M.Sc(Maths)/II Time:02:00 n: Regular	Time:02:00 To 5:00		
(2) Use (3) Inst (4)Dray	empt e of Pr tructic w nea	:- all Questions of both sections in same answer book / Supplementary rogrammable calculator & any other electronic instrument is prohibited. ons written on main answer Book are strictly to be obeyed. at diagrams & figures (If necessary) at right places suitable & Perfect data if needed			
		SECTION-I			
Q-1	a)	If U is an ideal of a ring with unity and $1 \in U$ prove that $U = R$.	(02)		
	b)		(02)		
	c)		(01)		
	d)	What are characteristics of the following rings ?	(01)		
		(i) $(\mathbb{Z}_6, +_6, \cdot_6)$ (ii) $(\mathbb{Z}, +, \cdot)$			
	e)	Define polynomial in an integral domain.	(01)		
Q-2	a)	Let $R = \{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} : a, b \in \mathbb{C} \}$, where \overline{a} is the conjugate of the complex number <i>a</i> . show that <i>R</i> is a non-commutative ring with unity.	(05)		
	b)	For nonzero polynomials $f, g \in D[x]$, prove that $[fg] = [f] + [g]$.	(05)		
		For ideals I_1 an I_2 of a ring R , prove that $I_1 \cup I_2$ is also an ideal of R if and only if $I_1 \subset I_2$ or $I_2 \subset I_1$.	d (04)		
		OR			
Q-2	a)	Consider the subset, $I = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ of the ring	(05)		
		$R = (M_2(\mathbb{Z}), +, \cdot)$. Is <i>I</i> right ideal of ? Is <i>I</i> left ideal of ?			
	b)	Prove that, the characteristic of a ring R with unity is n iff n is the smaller positive integer with $n1 = 0$.	st (05)		
	c)	Let $(R, +, \cdot)$ and (R', \oplus, \ominus) be rings. If homomorphism $\phi: (R, +, \cdot) \to (R', \oplus, \ominus)$ is onto with its kernel K, prove that $R/K \cong R'$.	(04)		
0.2	-)	Desce that a finite internal damain is a field	(07)		
Q-3		Prove that a finite integral domain is a field. Let D' be the set of all constant polynomials in $D[x]$ that is	(07)		
	D)	Let D' be the set of all constant polynomials in $D[x]$, that is $D' = \{(a, 0, 0, \dots): a \in D\}$ prove that	(07)		
		$D' = \{(a, 0, 0,): a \in D\}, \text{ prove that}$ (i) D' is an integral domain. (ii) $D \cong D'.$			

OR

- Q-3 a) For an integral domain *D*, show that the set D[x] of all polynomials on *D* is (07) also an integral domain under the binary operations addition and multiplication.
 - b) Prove that every Euclidean ring is a principle ideal ring. (07)

SECTION-II

Q-4	a)	If $f = (0, 1, 2, 0, 0, 0,), g = (1, 0, -3, 1, 0, 0,)$ for $f, g \in \mathbb{Z}[x]$ find $f + g$ and $f - g$.	(02)		
	b)	If $f = ([3], [0], [1], [0], [0], [0])$ and $g = ([2], [3], [4], [2], [0], [0])$, for $f, g \in \mathbb{Z}_5[x]$, find $f \cdot g$.	(02)		
	c)	Define irreducible polynomial in $F[x]$.	(01)		
	d)	Define algebraic element.	(01)		
	e)	Define normal extension of a field.	(01)		
Q-5	a)	If $x = (0, 1, 0, 0,) \in D[x]$, show that $x^n = (a_0, a_1, a_2,)$ for each positive integer n with $a_n = 1$ and $a_i = 0$ for each non-negative integer $i \neq n$.	(05)		
	b)	Obtain the quotient $q(x)$ and remainder $r(x)$ on dividing	(05)		
		$f(x) = 4x^4 - 3x^2 + 2$ by $g(x) = x^3 - 2x + 1$ in $\mathbb{R}[x]$ and express it in the form of division algorithm.			
	c)	Find all zeros of $f(x) = 30x^3 + 89x^2 + 82x + 24$ in $\mathbb{Z}_7[x]$.	(04)		
		OR			
Q-5	a)	For polynomials $f(x)$, $g(x) \neq 0$ in $F[x]$, prove that there exist unique polynomials $q(x)$ and $r(x)$ such that $f(x) = q(x)g(x) + r(x)$ where either $r(x) = 0$ or $[r(x)] \leq [g(x)]$.	(07)		
	b)	State and prove unique factorization theorem for polynomials.	(07)		
Q-6	a)	State and prove Eisenstein's criterion.	(07)		
	b)	Suppose <i>K</i> is a finite extension of a field <i>F</i> . show that $G(K, F)$ is a finite group and its order, $o(G(K, F))$ satisfies the relation $o(G(K, F)) \leq [K : F]$.	(07)		
OR					
Q-6	a)	Let <i>K</i> be an extension of a field <i>F</i> . prove that the element $a \in K$ is algebraic over <i>F</i> if and only if $F(a)$ is a finite extension of <i>F</i> .	(07)		
	b)	Let K be a normal extension of a field F, of characteristic 0. Show that there is a one to one correspondence between the set of subfiels of K which contains F and the set of subgroups of $G(K, F)$.	(07)		

*******18***14****S